
Key Exchange
Outside of TCP/IP

Team 52, under the advisement of Dr. Julie Rursch:
Andre C
Jacob Moody
Jack Potter
Joel Wacker
Jordan Svoboda
Logan Woolery

http://sdmay20-52.sd.ece.iastate.edu/

Project Plan

T52: Key Exchange Outside of TCP/IP

Project Overview

● Cross platform communication with zero trust in network

● Mobile application transfers cryptographic keys outside IP network stack,

● No personal identifiable information (PII) ever associated with users

● Centralized, self hosted server routes messages

T52: Key Exchange Outside of TCP/IP

Problem Statement

In a world where it is increasingly difficult to trust even the very backbone of modern

communication, it is necessary to develop a system through which messages can be

communicated in absolute security, regardless of the sanctity of the networks across which they

might be transmitted.

This requires a method for the generation and pre-sharing of cryptographic keys in a completely

offline fashion, enabling these keys for use in communication.

T52: Key Exchange Outside of TCP/IP

Conceptual Sketches

T52: Key Exchange Outside of TCP/IP

Functional Requirements

● No Personally Identifiable Information (PII) used to index or identify users

● Plain text messages must not be viewable by the messaging router

● “Method” for decrypting and accessing plain text messages must not pass over IP

● Users must be able to administer and run their own variant of the server

● User indexing (how users addresses others) must be cryptographically sound

● Server must not log connections from the client

T52: Key Exchange Outside of TCP/IP

Constraints

● Clients may access the server from any source IP, and may become unavailable for large

periods of time
○ Avoid synchronous communication
○ Avoid pushing (server -> client) communication

● Users must not be indexed/identified by PII
○ Usernames
○ Passwords
○ Email addresses
○ Device identification

● Server must have self hosted option
○ No closed source/non accessible server components
○ Server doesn’t log IP connections of users

● Client and Server must both be open source

T52: Key Exchange Outside of TCP/IP

Potential Risks and Mitigations

● Users impersonating others
○ Challenge based authentication (proves public/private key ownership)
○ In-person exchange of QR Codes (lowers social engineering attack feasibility)

● Man-in-the-middle attacks
○ Encryption happens before traversing network
○ Rogue server cannot decrypt messages sent or received

T52: Key Exchange Outside of TCP/IP

Resource and Cost Estimates

● Mobile platforms to conduct testing with
○ Need both iOS and Android devices

● Computer in which to design and test program
○ Mac required for testing and pushing iOS application to devices
○ Must be capable of running flutter SDK
○ Must be capable of using git
○ Must be capable of compiling and running go programs

● Publicly addressable server computer with capability to run server

T52: Key Exchange Outside of TCP/IP

Project Milestone and Schedule

12/06/2019: Working client prototype

1/18/2020: Successful message encryption

1/25/2020: Communication between two users

2/10/2020: Usable beta version of application

2/24/2020: Group chat fully functional

3/1/2020: All application functionality implemented

System Design

T52: Key Exchange Outside of TCP/IP

Functional Decomposition

● Graphical front end application
○ Generate keys and be able to transfer them through a system that is not over IP
○ Handle encryption/decryption and signing/verification of messages that travel over the network
○ Generate user fingerprints(addresses) and keep an index of them(contacts)
○ Provide a way for users to specify a specific backend for use

● Backend
○ Must provide an endpoint to allow clients to register and communicate with others
○ Must ensure authenticity and authorization of client for performing actions
○ Must keep messages on for devices to retrieve

T52: Key Exchange Outside of TCP/IP

Detailed Design

● Backend server exposed a number of RESTful HTTP endpoints
○ Data structures are communicated over JSON

● Users are identified through the use of a RSA public/private key pair
○ Users register with a server using their public key and a signature of that public key to prove that

they own the corresponding private key

● Check authorization and authenticity of clients
○ Clients are expected to pass a “challenge” in which a UUID string is give that they must sign with

their private key for making actions with their corresponding public key

● Security of messages sent to and from the server
○ HTTP messages are encrypted using TLS
○ User messages are encrypted using AES, with the key being exchanged over QR codes

T52: Key Exchange Outside of TCP/IP

Technology Platforms Used

● Flutter
○ Cross platform toolkit for using Dart
○ Parallelize Android and iOS development

● Go
○ Cross platform language
○ Specializes in network applications

● Github Actions
○ Continuous integration platform
○ Executes unit tests automatically

● Git
○ Version control
○ Used to manage multiple changes made to project

T52: Key Exchange Outside of TCP/IP

Test Plan

● Server unit tests - continuous integration system

○ Entire functionality of each end point
○ Possible error scenarios
○ Run on each commit and pull request

● Manual client testing
○ Android and iOS applications
○ Emulated Android and iOS devices
○ Hot reloading - instantly test every change

● Large scale beta testing
○ Planned, not completed due to pandemic
○ Distribute applications for use/penetration testing

■ Cyber Defence Competition participants
■ Friends, classmates, coworkers

T52: Key Exchange Outside of TCP/IP

Prototype and Building Block
Implementations

● Original implementation was using PGP with RSA being the backing cryptographic

algorithm
○ We found PGP was overkill and difficult to implement
○ Switched to pure RSA signing

● Transfering keys using QR codes resulted in unexpected integers as an outcome
○ QR codes with several hundred characters of text would not scan correctly
○ During testing, we found QR codes of capitalized text had the least issues
○ Keys are converted to base32 before converted to QR codes

Demonstration

Main Screen

Bob Fills in Server Data, Generates Keys

Bob Displays Symmetric Key, Alice Scans It

Alice Enters Server Info, Generates Keypair

Bob Scans Alice’s Public Key

Bob Displays Public Key

Alice Scans/Saves Bob’s Pubkey

Video Demo

T52: Key Exchange Outside of TCP/IP

Engineering Standards and Design Practices

● Developmental Design Practices
○ Cryptographically secure random numbers

■ GroupID
■ Symmetric key

○ Version control
○ Encryption of data upon rest

● Engineering Standards
○ RFC 8017 RSA
○ RFC 2818 HTTPS
○ RFC 8018 AES
○ RFC 4112 UUID

Conclusion

Member Contributions

Andre C

Frontend:

● Networking API
● Application compatibility testing

○ iOS/Android design

○ Front/backend communication
● UI Flow design and development
● Network Security Testing
● Database schema drafting

Jacob Moody

Backend:

● Unit testing
● Continuous Integration
● Design of API endpoints

● Design of challenge system
● Original PGP design
● Pure RSA rework
● Backend deployment
● Logging and performance testing

Member Contributions (Cont.)

Jack Potter

Frontend:

● Client functional testing
● Flutter Android Application Developer

○ Navigation

○ QR code generation
● Code review
● Library research/integration

Joel Wacker

Frontend:

● Flutter Android Application Developer
● Client to Client implementation
● Client hardware integration

○ Camera access for iOS/Android
● QR Code Scanner for key sharing
● Physical Phone Tester

Member Contributions (Cont.)

Jordan Svoboda

● Client side implementation of crypto

functionality
○ Symmetric key generation and

storage, encryption, decryption
○ Asymmetric key pair generation and

storage, message signing and
verification

● Database implementation for Chats

and Messages

● Implementation of Chat/Messaging

interface on the client

Logan Woolery

● User Interface development

● UX management

● Integrations testing

● CI/CD

● Automated testing development

T52: Key Exchange Outside of TCP/IP

Future Prospects

● Method for verification that server is who they claim to be, and connection is not being

MITM’d
○ While being MITM’d does not expose actual messages it may allow disclosure of who is messaging

who at what times

● Support for other non IP key transfer methods
○ Use of audio to send and receive information
○ Use of camera flashes to send and receive information

● Federation between different self hosted server applications
○ This would allow two users using two different self hosted servers to communicate

Thank You
Dr. Rursch!

Questions?

